
A Non-Local Cost Aggregation Method for Stereo Matching

Qingxiong Yang
City University of Hong Kong

http://www.cs.cityu.edu.hk/˜qiyang/

Abstract

Matching cost aggregation is one of the oldest and still
popular methods for stereo correspondence. While effec-
tive and efficient, cost aggregation methods typically ag-
gregate the matching cost by summing/averaging over a
user-specified, local support region. This is obviously on-
ly locally-optimal, and the computational complexity of the
full-kernel implementation usually depends on the region
size. In this paper, the cost aggregation problem is re-
examined and a non-local solution is proposed. The match-
ing cost values are aggregated adaptively based on pixel
similarity on a tree structure derived from the stereo im-
age pair to preserve depth edges. The nodes of this tree
are all the image pixels, and the edges are all the edges
between the nearest neighboring pixels. The similarity be-
tween any two pixels is decided by their shortest distance
on the tree. The proposed method is non-local as every n-
ode receives supports from all other nodes on the tree. As
can be expected, the proposed non-local solution outper-
forms all local cost aggregation methods on the standard
(Middlebury) benchmark. Besides, it has great advantage
in extremely low computational complexity: only a total of 2
addition/subtraction operations and 3 multiplication oper-
ations are required for each pixel at each disparity level. It
is very close to the complexity of unnormalized box filtering
using integral image which requires 6 addition/subtraction
operations. Unnormalized box filter is the fastest local cost
aggregation method but blurs across depth edges. The pro-
posed method was tested on a MacBook Air laptop comput-
er with a 1.8 GHz Intel Core i7 CPU and 4 GB memory. The
average runtime on the Middlebury data sets is about 90
milliseconds, and is only about 1.25× slower than unnor-
malized box filter. A non-local disparity refinement method
is also proposed based on the non-local cost aggregation
method.

1. Introduction

Stereo correspondence has traditionally been, and con-
tinues to be, one of the most extensively researched topics

in computer vision. Stereo algorithms generally perform
(subsets of) the following four steps:

1. matching cost computation;
2. cost (support) aggregation;
3. disparity computation/optimization; and
4. disparity refinement.

Scharstein and Szeliski [21] developed a taxonomy and
categorization scheme for stereo algorithms, and separat-
ed different stereo algorithms into two broad classes: local
and global algorithms. In a local algorithm, the disparity
computation at a given image pixel depends only on image
intensity/color values within a window. All local algorithms
require cost aggregation (step 2), and usually make implic-
it smoothness assumptions by aggregating support. Global
algorithms, on the other hand, make explicit smoothness as-
sumptions and then solve an optimization problem. Such al-
gorithms typically omit the cost aggregation step, but rather
seek a disparity solution (step 3) that minimizes a global
cost function. Popular global methods include dynamic pro-
gramming [2, 23], belief propagation [13, 14, 15, 16] and
graph cuts [3]. Unlike local algorithms, a global algorithm
estimates the disparity at one pixel using the disparity esti-
mates at all the other pixels.

Cost aggregation methods are traditionally performed lo-
cally by summing/averaging matching cost over windows
with constant disparity. The most efficient local cost aggre-
gation method is unnormalized box filtering which runs in
linear time (relative to the number of image pixels) using in-
tegral image [24] (also known as a summed area table [8])
but blurs across depth edges. Yoon and Kweon [6] demon-
strated that edge-aware filters like bilateral filter [22] are
very effective for preserving depth edges and Yang et al.
[5] used bilateral filter for depth superresolution. However,
full-kernel implementation of the bilateral filter is slow.

A number of approximation methods have been devel-
oped to accelerate the bilateral filter, including Paris and
Durand’s fast bilateral filter [12], Porikli’s O(1) bilateral fil-
ter [17] and Yang’s real-time bilateral filters [25, 26]. These
methods rely on quantization, and will degrade the perfor-
mance as demonstrated in [18]. Paris and Durand’s method

1

http://www.cs.cityu.edu.hk/~qiyang/

was implemented on graphics processing unit (GPU) and
used for stereo matching. However, the reconstruction ac-
curacy is much lower than the full-kernel implementation
[6]. Recently, He et al. [19] proposed a new edge-aware
filter called guided image filter. Unlike bilateral filter, it-
s runtime is linear in the number of image pixels, and was
demonstrated (in [7]) to outperform all the other local meth-
ods on Middlebury benchmark [20] both in terms of speed
and accuracy.

All of the above cost aggregation methods greatly ad-
vance the state of stereo vision in the indicated ways, but
they are adversely affected by the local nature of traditional
window-based cost aggregation algorithms and are vulner-
able to the lack of texture.

In this paper, the cost aggregation problem is re-
examined and a non-local solution is proposed. Similar to
previous edge-aware filters, a guidance image (typically the
reference camera image) will be used to compute the pixel
similarity for adaptive aggregation. However, the guidance
image is treated as a connected, undirected graph in this
paper. The vertices are all the image pixels and the edges
are all the edges between the nearest neighboring pixels.
The matching cost values are then aggregated adaptively
based on pixel similarity in a way similar to bilateral filter-
ing but on a minimum spanning tree (MST) derived from
this graph. The similarity between any two vertices is de-
cided by their shortest distance on the MST.

A great advantage of using MST is that it gives a more
natural image pixel similarity measurement metric. It is
more accurate than the previous methods so that every pixel
in the image can correctly contribute to all the other pixels
during cost aggregation. In contrast, local cost aggregation
methods require a user-specified or automatically detected
window, and only pixels inside this window provide sup-
ports. The proposed method is thus a non-locally-optimal
solution for cost aggregation problem. It is theoretically
better than traditional local solutions for low texture region-
s. This is straightforward as the window used by the local
methods cannot guarantee to cover the whole low textured
region. Quantitative evaluation on Middlebury benchmark
[20] shows that the proposed method outperforms the guid-
ed image filter based cost aggregation method [7] which is
the state-of-the-art local method (thus all local methods).
The proposed method can be naturally extended to the time
domain for enforcing temporal coherence without deterio-
rating the depth edges when all the video frames are consid-
ered.

The proposed non-local method also offers the advantage
of an extremely low computational complexity: only a to-
tal of 2 addition/subtraction operations and 3 multiplication
operations are required for each pixel at each disparity level.
It is very close to the computational complexity of unnor-
malized box filter which requires 6 addition/subtraction op-

erations. Specifically, the average runtime of the proposed
method is about 90 milliseconds for the Middlebury data
sets on a MacBook Air laptop computer with a 1.8 GHz In-
tel Core i7 CPU and 4 GB memory, and is only about 1.25×
slower than unnormalized box filter[24] but 10× faster than
guided image filter based cost aggregation [7] which is the
most efficient edge-aware local cost aggregation method.

A simple but effective non-local disparity refinemen-
t method is also proposed based on the non-local cost ag-
gregation method. A new cost volume will be computed
based on the current disparity estimates and the pixel mem-
bership (stable or unstable) obtained from mutual consisten-
cy check. The proposed non-local cost aggregation method
is then applied to this cost volume, followed by a winner-
take-all operation. This method is more robust and effective
than the local disparity refinement method in [7] and about
70× faster.

The main contribution of this paper is a novel cost ag-
gregation method with the following advantages:

1. it is a non-local solution, which theoretically and ex-
perimentally outperforms local cost aggregation meth-
ods for low textured regions.

2. its computational complexity is extremely low: only a
total of 2 addition/subtraction operations and 3 mul-
tiplication operations are required for each pixel at
each disparity level.

3. it can be used for non-local disparity refinement,
which is proved to be more robust and effective than
the local disparity refinement method presented in [7]
and about 70× faster.

2. Non-Local Cost Aggregation

In this section, the bilateral filter is briefly introduced,
and cost aggregation on a tree structure is proposed. A lin-
ear time algorithm is presented afterwards. The computa-
tional complexity is discussed finally.

2.1. Cost Aggregation using the Bilateral Filter

Edge-aware filters like bilateral filter are known to be
effective for edge-preserving smoothing and have been
demonstrated to be very effective for local matching cost
aggregation. Let Cd(p) denote the matching cost for pixel p
at disparity level d, and CA

d (p) denote the aggregated cost.
Using a guidance image I (which is typically the reference
camera image), the bilateral filter can be used to compute
the aggregated cost as follows

CA
d (p) =

∑
q exp(− |p−q|

σS
)exp(− |I(p)−I(q)|

σR
)Cd(q)∑

q exp(− |p−q|
σS

)exp(− |I(p)−I(q)|
σR

)
, (1)

where q is a pixel within the user-specified support region,
and σS and σR are two constants used to adjust the spatial

similarity and the range (intensity/color) similarity respec-
tively. If the guidance image I is different from the original
matching cost, Eqn. (1) is a joint bilateral filter. The nor-
malization step in Eqn. (1) is usually not required when the
same guidance image I is used for all disparity levels:

CA
d (p)=

∑
q

exp(−|p− q|
σS

)exp(−|I(p)−I(q)|
σR

)Cd(q). (2)

2.2. Cost Aggregation on a Tree Structure

Unlike previous cost aggregation methods, in this paper,
the guidance image I is represented as a connected, undi-
rected graph G = (V,E), with weight function w : E → R
mapping edges to real-valued weights. The vertices V are
all the image pixels and the edges E are all the edges
between the nearest neighboring pixels. The graph G is
thus simply the standard 4−connected grid, and is a pla-
nar graph. In this paper, the weight function w is actually
the image gradient operation. Let s and r be a pair of neigh-
boring pixels, the weight between s and r is

w(s, r) = w(r, s) = |I(s)− I(r)|.1 (3)

From G, a spanning tree can be computed by removing
“unwanted” edges. Obviously, we do not want to aggre-
gation across the depth edges which are typically also col-
or/intensity edges. Edges with large weights thus will be re-
moved during spanning tree construction. The result turns
out to be the minimum spanning tree (MST) which connect-
s all the vertices, and the sum of its weights is minimum out
of all spanning trees.

It is straightforward to define the similarity between t-
wo image pixels using a MST. If the two pixels are close
in a MST, then they are similar, vice versa. The distance
between two nodes in a MST is the sum of weights of the
connected edges (that is the shortest path) between the two
nodes. Let D(p, q) = D(q, p) denote the distance between
p and q in the MST, and

S(p, q) = S(q, p) = exp(−D(p, q)

σ
) (4)

denote the similarity between p and q where σ is a constant
used to adjust the similarity between two nodes, the joint
bilateral filter in Eqn. (2) can then be directly extended to
MST structure:

CA
d (p) =

∑
q

S(p, q)Cd(q) =
∑
q

exp(−D(p, q)

σ
)Cd(q). (5)

Note that aggregation using MST relaxes two ambiguities
σS and σR in Eqn. (2) to a single ambiguity σ in Eqn. (5).

1For a color guidance image, the maximum w(s, r) value computed
separately from the three channels will be selected as correct.

(a)Guidance I (b)Bilateral Filter (c)Bilateral Filter
(σS = 0.05). (σS = ∞).

(d) MST (e) MST (f) MST
(σ = 0.05). (σ = 0.1). (σ = 0.3).

Figure 1. Support weights computed from a synthetic image. (a) is
the guidance image I , (b)-(f) are support weights received by the
first image pixel (on the top left of I). The support weight in (b)-(f)
decreases from 1 to 0 as the color changes from red to blue. (b)-
(c) are computed using joint bilateral filter with σR = 0.05. σS

is set to infinity in (c) so that every pixel contributes its support.
(d)-(f) are support weights computed using the MST derived from
(a) with σ = 0.05, 0.1, 0.3, respectively. Note that the support
weights in (d)-(f) are more natural for cost aggregation than (b)-
(c).

A great advantage of using MST is that it gives a more
natural image pixel similarity measurement metric. It is
more accurate than the previous methods so that every pixel
in the image can correctly contribute to all the other pixels
during cost aggregation. In contrast, previous cost aggrega-
tion methods require a user-specified or automatically de-
tected window, and only pixels inside this window provide
supports. This is equal to giving zero support weights to
pixels outside the window. This window-based/local cost
aggregation method is not natural and it is impossible to
find a window that is optimal for different data sets. Fig.
1 shows one such failure case. Fig. 1 (a) is the guidance
image I . The flat region in Fig. 1 (a) has uniform intensi-
ty, and it is natural that the support weights received by the
first image pixel (on the top left of I) from this region are
high. However, this is not true when the bilateral filter is
used with a relative small window (σS = 0.052) as shown
in Fig. 1 (b). If a huge window (σS = ∞) is chosen to cov-
er every pixel in I , the behavior of the bilateral filter will
be correct in the flat region, but a relatively large amount of
noises will be introduced by the texture region in Fig. 1 (a)
as can be seen in Fig. 1 (c).

The use of a MST sheds some light on “non-local” cost
aggregation. It automatically accepts similar pixels (close
on MST) by assigning them relatively large support weight-

2Normalized image coordinate is used such that it resides in [0, 1].
Image intensity is also normalized such that it ranges from 0 to 1.

s and rejects dissimilar pixels (far way on MST) by giving
them tiny support weights (that are very close to zero). Fig.
1 (d)-(f) present the support weights computed using MST
derived from Fig. 1(a) with σ = 0.05, 0.1, 0.32, respective-
ly. Note that for pixels that are far away from the flat region
(e.g., pixels in the image center), their supports are always
extremely low (shown in blur color) even when σ is rela-
tively large. Meanwhile, the supports from the flat region
are always high (shown in red color).

2.3. A Linear Time Exact Algorithm

Another great advantage of the proposed non-local
method over local optimization is that the computational
complexity is extremely low. The efficiency originates from
the pixel similarity measurement metric defined by MST in
Sec. 2.2. The advantage is that the similarity depends on
the distance of the two nodes in MST which can be accu-
mulated when MST is traced from the leaf nodes to the root
node (as shown in Fig. 2 (a)).

Claim 1. Let Tr denote a subtree of a node s and r de-
note the root node of Tr, then the supports node s received
from this subtree is the summation of 1) the supports node
s received from r and 2) S(s, r) times the supports node r
received from its subtrees.

Claim 1 is directly obtained from Eqn. (5) and the
definition of spanning tree. Let v denote the nodes on
r’s subtrees, then the supports r received from its sub-
trees is

∑
v S(r, v)Cd(v), and the supports s received

from Tr can be separated into two parts including 1) sup-
port from r: S(s, r)Cd(r); 2) supports from r’s sub-
trees:

∑
v S(s, v)Cd(v) =

∑
v S(s, r)S(r, v)Cd(v) =

S(s, r)∑v S(r, v)Cd(v) = S(s, r) times the supports n-
ode r received from its subtrees.

Based on Claim 1, the matching cost is firstly aggregated
from the leaf nodes towards root nodes as shown in Fig. 2
(a) where the numbers are the distance between the nodes
and their parents, and v4 is the root node. Let CA↑

d denote
the aggregated cost values and P (vc) denote parent of node
vc, then at each node v ∈ V ,

CA↑
d (v) = Cd(v) +

∑
P (vc)=v

S(v, vc) · CA↑
d (vc). (6)

Note that if node v is a leaf node (that has no child), then
CA↑

d (v) = Cd(v) according to Eqn. (6).

Claim 2. Let Tr denote a subtree of a node s and r denote
the root node of Tr, and let CA

d (s) denote all the supports
received by node s on the tree, then the supports r received
from nodes other than Tr is S(s, r) · [CA

d (s) − S(r, s) ·
CA↑

d (r)].

After aggregation, CA↑
d = CA

d for the root node of MST
which receives supports from all nodes on MST. The rest

2 1

3 5

4

2 1
3

5

4

(a) (b)

2 1
3

5

4

(c)

2 1

3 5

4

(d)

Figure 2. Cost aggregation on a MST.

only receive supports from its subtrees. The simplest so-
lution is iteratively changing the root node and iteratively
aggregating the cost as shown in Fig. 2 (b). This is ob-
viously too slow, but it gives a clue. Note that in Fig. 2
(c), the aggregated cost value CA↑

d (v3) (note: grouped in
red circle in Fig. 2 (c)) at node v3 contains supports re-
ceived from its subtrees (node v1 and v2) and itself, thus it
is only necessary to aggregate the cost from the leaf nodes
of v3’s other subtrees (note: grouped in blue circle in Fig.
2 (c)) according to Eqn. (6), which is actually S(v4, v3)
times the summation of the supports node v4 received from
its subtrees (when v3 is the root node) and itself accord-
ing to Claim 1. Also note that the aggregated cost value
CA↑

d (v4) = CA
d (v4) contains supports from all nodes if v4

is the root node, thus CA
d (v4)− S(v4, v3) · CA↑

d (v3) (note:
grouped in blue circle in Fig. 2 (c)) are actually all the sup-
ports v4 received from nodes other than v3 and its subtrees.
Thus, S(v4, v3) · [CA

d (v4)−S(v3, v4) ·CA↑
d (v3)] is actually

the supports received by node v3 from v4 and its subtrees as
shown in Fig. 2 (c).

According to Claim 2, the aggregated cost value CA
d (v)

for any node v on a MST can be obtained from its parent
P (v) as follows

CA
d (v) = CA↑

d (v)

+S(P (v), v) · [CA
d (P (v)) − S(v, P (v)) · CA↑

d (v)],

= S(P (v), v)·CA
d (P (v))+[1−S2(v, P (v))]·CA↑

d (v). (7)

Because CA
d = CA↑

d for the root node of MST, the ag-
gregated cost value at each node can be obtained using Eqn.
(7) by tracing from the root node of MST towards its leaf
nodes as shown in Fig. 2 (d). Hence, the whole cost ag-
gregation process is separated into two steps: 1) aggregate
the original matching cost Cd from leaf nodes towards root
node using Eqn. (6) (shown in Fig. 2 (a)) and store it as
CA↑

d ; 2) aggregate CA↑
d from root node towards leaf nodes

using Eqn. (7) (shown in Fig. 2 (d)).

2.4. Computational Complexity

Note that in Eqn. (6) and (7), S(v, vc), S(P (v), v) and
1−S2(v, P (v)) only depend on the edges of MST and can
be pre-computed, thus only a total of 2 addition/subtraction
operations and 3 multiplication operations will be required
for each node at each disparity level during cost aggrega-
tion. Unnormalized box filtering using integral image[24],
on the other hand, requires 3 addition/subtraction opera-
tions for each pixel at each disparity level for computing
the integral image, and 3 addition/subtraction operations on
the integral image to compute the locally aggregated cost
value, thus a total of 6 addition/subtraction operations [8]
is required at each pixel and each disparity level for local
aggregation using integral image. Note that floating point
addition takes 3 − 6 clock cycles and multiplication takes
4 − 8 clock cycles, depending on the microprocessor [9].
Hence, the speed of the proposed method is close to (at
most 1.7× slower than) unnormalized box filter, which is
the most efficient cost aggregation method. The proposed
non-local method and unnormalized box filter are tested on
a MacBook Air laptop computer with a 1.8 GHz Intel Core
i7 CPU and 4 GB memory. The average runtime of the four
standard Middlebury data sets (including Tsukuba, Venus,
Teddy and Cones data sets) is about 90 milliseconds using
the proposed method, and the average runtime of unnormal-
ized box filter is about 72 milliseconds. Note that the speed
of the two methods is similar: the proposed method is on-
ly about 1.25× slower. The average runtime of the guided
image filter based cost aggregation method [7] (which is
currently the most efficient edge-aware cost aggregation al-
gorithm) was also computed using the same laptop comput-
er, and is 960 milliseconds, which is about 10× slower than

the proposed method. The proposed method requires an ex-
tra step to compute the MST. Because the graph derived
from the guidance image is a planar graph, the complexity
of computing its MST is linear to the number of image pix-
els [4, 10]. Specifically, the runtime is about 7 milliseconds
on average on the Middlebury data sets. Because MST is
computed only once for every stereo pair and is indepen-
dent of the number of disparity levels, the computation can
be ignored usually, especially when the number of disparity
levels is large.

3. Non-Local Disparity Refinement

In this section, a new disparity refinement method is pro-
posed using the non-local cost aggregation method present-
ed in Sec. 2. First, the non-local cost aggregation method
is run in turn with both the left and the right image as ref-
erence images to obtain two corresponding disparity maps.
This is done just to support a subsequent mutual consisten-
cy check (often called left right check) that divides all the
pixels into stable or unstable pixels. A stable pixel should
pass the mutual consistency check requiring that on the pix-
el grid that the left and right disparity maps are computed,
they are perfectly consistent (same disparity value). Let D
denote the left disparity map, a new cost value is computed
for each pixel p at each disparity level d as

Cnew
d (p)=

{ |d−D(p)| p is stable and D(p) > 0,
0 else.

(8)

Note that for all unstable pixels (due to occlusion, lack of
texture, specularity, etc), the cost value Cnew

d (p) will be ze-
ro for all disparity levels, thus will completely depend on
the stable pixels. If a winner-take-all selection is applied to
this new cost volume, then the disparity values of the sta-
ble pixels will be the same as disparity map D, and the rest
zero.

The non-local cost aggregation method presented in
Sec. 2 is then employed to aggregate the new cost values
Cnew

d (p) to propagate the disparity values from stable pix-
els to unstable pixels. The advantages of this method are

1. efficient. As summarized in Sec. 2.4, the computation-
al complexity of this method is close to unnormalized
box filter using integral image.

2. non-local. The size of unstable regions can be huge.
Theoretically, it allows the total number of unstable
pixels to be as large as the number of image pixels mi-
nus one. In this extreme case, the disparity values of
the unstable pixels will be the same as the disparity of
the stable pixel after refinement.

Note that this non-local property differentiates the pro-
posed disparity refinement method from the others which
usually use a local filter or color segmentation. For instance,

(a) Local guided (b) Non-local (c) Local guided (d) Local guided (e) Non-local (f) Non-local
image filter cost aggregation[7] aggregation[7] aggregation aggregation
based cost aggregation + local + non-local + local + non-local

aggregation[7] in Sec. 2 refinement[7] refinement refinement[7] refinement
(8.33%). (6.82%). (5.82%). (5.58%). (6.56%). (5.55%).

Figure 3. Experimental results on the Middlebury data sets[20]. (a)-(b) are disparity maps obtained using the local guided image filter based
cost aggregation method [7] and disparity maps obtained using the non-local cost aggregation method proposed in Sec. 2, respectively.
The bold numbers under the images are the average errors (percentages of bad pixels) which shows that our method outperforms the guided
filter [7]. The corresponding quantitative evaluation is summarized in Table 1. Note that the proposed method performs better around large
low textured regions. For instance, see Tsukuba data set (1st row), disparities of the low textured region between the head and the lamp in
(b) is more accurate than (a). (c)-(f) present visual comparison of two disparity refinement methods with numerical comparison provided
in Table 2. (c) and (e) are disparity maps obtained using the local weighted median filter base disparity refinement method in [7], and (d)
and (f) are disparity maps obtained using the non-local disparity refinement method proposed in Sec. 3. (c)-(d) use the local guided image
filter based cost aggregation method in [7] and (e)-(f) use the non-local cost aggregation method proposed in Sec. 2. Note: the reader is
urged to view these images at full size on a video display, for details may be lost in hard copy.

[7] also presents a disparity refinement method for stereo
matching. A median filter overlap the unstable regions is
used to propagate the disparity from stable pixel to the un-
stable regions. The unstable region should thus be relative
small. In contrast, the method proposed in this Section does
not make any assumption about the size of the unstable re-
gion.

4. Experimental Results

In this section, results supporting the claim that the al-
gorithm is currently the strongest cost aggregation method
available on the Middlebury data sets[20] is reported. The
guided image filter [19] has recently been proved to be the
top performer [7] among all local methods on Middlebury
benchmark [20]. As a result, demonstrating that the pro-

posed non-local method outperforms this local filter 3 will
be enough. The exact matching cost measurement method
used in [7] is thus adopted. The guided image filter and
the proposed non-local method are then used to aggregate
the matching cost values. Finally, a winner-take-all opera-
tion is employed to obtain the disparity maps. The proposed
non-local cost aggregation method has a single parameterσ,
and is set to 0.1 throughout the paper because the optimal σ
value for the Middlebury data sets [20] is 0.12 without dis-
parity refinement (6.68% bad pixels on average) and 0.08
with disparity refinement (5.46% bad pixels on average).

The disparity maps of the Middlebury data sets com-
puted using the guided image filter based cost aggrega-
tion method[7] and the proposed non-local cost aggregation

3The source code provided by the authors of [7] is used to obtain the
disparity maps computed from the guided image filter.

Avg. Tsukuba Venus Teddy Cones Avg.
Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc Error

Fig. 3 (a): local guided image filter [7] 62.4 2.08 2.88 8.40 1.58 2.77 16.0 7.79 16.4 18.4 3.06 12.1 8.60 8.33
Fig. 3 (b): proposed non-local method 49.4 1.68 2.33 7.36 0.59 1.15 5.45 6.81 14.1 15.9 3.84 12.2 10.6 6.82

Table 1. Quantitative comparison of the local guided image filter based cost aggregation method in [7] and the proposed non-local cost ag-
gregation methods on the Middlebury benchmark [20] with error threshold 1. The numbers in the last thirteen columns are the percentages
of the pixels with incorrect disparities on different data sets and on average. As can be seen from the table, the performance of the proposed
non-local cost aggregation method is higher than guided filter [7], which is currently the best edge-preserving local stereo method both in
terms of speed and accuracy. Moreover, the proposed non-local cost aggregation method is about 10× faster than [7] on average.

Avg. Tsukuba Venus Teddy Cones Average
Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc Error

Fig. 3 (c): local [7] + local [7] 32.0 1.87 2.23 8.07 0.28 0.46 2.75 6.79 12.3 16.4 2.75 8.16 7.82 5.82
Fig. 3 (d): local [7] + non-local 25.7 1.62 2.01 7.00 0.13 0.34 1.53 6.80 12.4 16.3 2.73 8.35 7.69 5.58
Fig. 3 (e): non-local + local [7] 45.4 2.33 2.64 9.44 0.50 0.61 3.93 6.77 11.9 15.9 4.20 9.23 11.3 6.56
Fig. 3 (f): non-local + non-local 28.6 1.56 1.91 8.25 0.28 0.42 2.72 5.99 11.5 14.0 3.00 8.53 8.47 5.55

Table 2. Numerical comparison of the local weighted median filter base disparity refinement method in [7] and the proposed non-local
disparity refinement method on the Middlebury benchmark [20] with error threshold 1. The numbers in the last thirteen columns are the
percentages of the pixels with incorrect disparities on different data sets and on average. As can be seen from the table, the proposed
non-local disparity refinement method is more robust than [7] and the improvement is always higher than the weighted median filter base
disparity refinement method in [7]. Moreover, the proposed non-local disparity refinement method is about 70× faster than [7] on average.

method are presented in Fig. 3 (a)-(b). The corresponding
quantitative evaluation is presented in Table 1, which shows
that the proposed non-local cost aggregation method out-
performs the local guided image filter. Besides, the speed
of the proposed non-local cost aggregation method is about
10× faster. Visual comparison in Fig. 3 (a)-(b) shows
that the proposed non-local cost aggregation performs better
around low textured regions. For instance, the low textured
region between the head and the lamp in Tsukuba data set
(first row of Fig. 3 (a)-(b)). However, the proposed method
may be less accurate around highly-textured regions where
stereo matching is expected to perform well (but may be
not due to noises), thus the supports from the neighbors are
relatively small according to the proposed method. Errors
around highly-textured regions are mostly due to noises and
will cause inconsistency between the left and right disparity
maps. Mutual consistency check will classify these pixel-
s into unstable pixels, and the proposed non-local disparity
refinement method is expected to correct these errors.

Fig. 3 (c)-(f) visually compare the weighted median fil-
ter based disparity refinement method presented in [7] and
the proposed non-local disparity refinement method. (c)-
(d) used the same the guided image filter based cost ag-
gregation method but different disparity refinement meth-
ods, and (e)-(f) used the proposed non-local cost aggrega-
tion method but different disparity refinement methods. As
expected, most of the noises in Fig. 3 (b) are removed by
the proposed non-local disparity refinement method as can
be seen in Fig. 3 (f). However, these noises remain in Fig.
3 (e) which are obtained using the local disparity refine-
ment method in [7]. Quantitative evaluation is summarized

in Table 2, which shows that the proposed non-local dis-
parity refinement method outperforms the local method in
[7] for the two different cost aggregation methods. Table
2 also shows that the local disparity refinement method in
[7] is not suitable for the proposed non-local cost aggrega-
tion method as the improvement is not evident. The average
error is reduced by only 0.26% (from 6.82% to 6.56%) af-
ter disparity refinement, and the errors of the Tsukuba and
Cones data sets increase. The average runtime of the local
disparity refinement method in [7] is about 6.5 second on
the Middlebury data sets. It is about 70× slower than the
proposed non-local disparity refinement method.

5. Conclusion

To avoid being adversely affected by the local nature of
traditional window-based cost aggregation algorithms thus
vulnerable to the lack of texture, this paper try to shed some
light on developing non-local algorithms by suggesting ag-
gregating cost on a tree structure. The proposed MST-based
non-local solution has been demonstrated to outperform all
local cost aggregation methods on Middlebury benchmark
[20] both in terms of speed and accuracy. In the near
future, redundance among the disparity search range [11]
and parallel algorithms for the proposed non-local aggrega-
tion method [1] will be considered and more matching cost
methods will be tested with the proposed method for a bet-
ter understanding of its behavior.

References

[1] D. Bader and G. Cong. A fast, parallel spanning
tree algorithm for symmetric multiprocessors (smp-
s). Journal of Parallel and Distributed Computing,
65:994–1006, 2005.

[2] A. Bobick and S. Intille. Large occlusion stereo. IJCV,
33:181–200, 1999.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approx-
imate energy minimization via graph cuts. PAMI,
23(11):1222–1239, 2001.

[4] D. CHERITON and R. E. TARJAN. Finding minimum
spanning trees. SIAM Journal on Computing (SICOM-
P), pages 724–742, 1976.

[5] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-
depth super resolution for range images. In CVPR,
2007.

[6] K.-J. Yoon and I.-S. Kweon. Adaptive support-
weight approach for correspondence search. PAMI,
28(4):650–656, 2006.

[7] C.Rhemann, A. Hosni, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual cor-
respondence and beyond. In CVPR, pages 3017–3024,
2011.

[8] F. Crow. Summed-area tables for texture mapping. In
Siggraph, 1984.

[9] A. Fog. Optimizing software in C++: An optimization
guide for Windows, Linux and Mac platforms. 2011.

[10] T. Matsui. The minimum spanning tree problem on
a planar graph. Discrete Applied Mathematics, pages
91–94, 1995.

[11] D. Min, J. Lu, and M. Do. A revisit to cost aggre-
gation in stereo matching: How far can we reduce its
computational redundancy? In ICCV, 2011.

[12] S. Paris and F. Durand. A fast approximation of the bi-
lateral filter using a signal processing approach. IJCV,
81:24–52, January 2009.

[13] W. T. Freeman, E. Pasztor, and O. T. Carmichael.
Learning low-level vision. IJCV, 40(1):25–47, 2000.

[14] J. Sun, N. Zheng, and H. Y. Shum. Stereo matching
using belief propagation. PAMI, 25(7):787–800, 2003.

[15] Q. Yang, L. Wang, and N. Ahuja. A constant-space
belief propagation algorithm for stereo matching. In
CVPR, pages 1458–1465, 2010.

[16] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nis-
ter. Stereo matching with color-weighted correlation,
hierachical belief propagation and occlusion handling.
PAMI, 31(3):492–504, 2009.

[17] F. Porikli. Constant time o(1) bilateral filtering. In
CVPR, 2008.

[18] C. Richardt, D. Orr, I. Davies, A. Criminisi, and
N.Dodgson. Real-time spatiotemporal stereo match-
ing using the dual-cross-bilateral grid. In ECCV, pages
510–523, 2010.

[19] K. He, J. Sun, and X. Tang. Guided image filtering. In
ECCV, pages 1–14, 2010.

[20] D. Scharstein and R. Szeliski. Middlebury stereo eval-
uation.
http://vision.middlebury.edu/stereo/eval/.

[21] D. Scharstein and R. Szeliski. A taxonomy and evalu-
ation of dense two-frame stereo correspondence algo-
rithms. IJCV, 47:7–42, 2002.

[22] C. Tomasi and R. Manduchi. Bilateral filtering for
gray and color images. In ICCV, pages 839–846,
1998.

[23] O. Veksler. Stereo correspondence by dynamic pro-
gramming on a tree. In CVPR, pages 384–390, 2005.

[24] P. Viola and M. Jones. Robust real-time face detection.
volume 57, pages 137–154, 2003.

[25] Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o(1)
bilateral filtering. In CVPR, 2009.

[26] Q. Yang, S. Wang, and N. Ahuja. Svm for edge-
preserving filtering. In CVPR, pages 775–1782, 2010.

